Shortcuts

Source code for pypose.module.pf

import torch
from . import EKF
from .. import bmv, bvv
import torch.nn.functional as F
from torch.distributions import MultivariateNormal


[docs]class PF(EKF): r''' Performs Batched Particle Filter (PF). Args: model (:obj:`System`): The system model to be estimated, a subclass of :obj:`pypose.module.NLS`. Q (:obj:`Tensor`, optional): The covariance matrices of system transition noise. Ignored if provided during each iteration. Default: ``None`` R (:obj:`Tensor`, optional): The covariance matrices of system observation noise. Ignored if provided during each iteration. Default: ``None`` particles (:obj:`Int`, optional): The number of particle. Default: ``1000`` A non-linear system can be described as .. math:: \begin{aligned} \mathbf{x}_{k+1} &= \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k, t_k) + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}) \\ \mathbf{y}_{k} &= \mathbf{g}(\mathbf{x}_k, \mathbf{u}_k, t_k) + \mathbf{v}_k, \quad \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}) \end{aligned} Particle filter can be described as the following equations, where the subscript :math:`\cdot_{k}` is omited for simplicity. 1. Generate Particles. .. math:: \begin{aligned} &\mathbf{x}_{k}=\mathbf{p}(\mathbf{x},n\cdot\mathbf{P}_{k},N)&\quad k=1,...,N \\ &\mathbf{P}_{k}=\mathbf{P} &\quad k=1,...,N \end{aligned} where :math:`N` is the number of Particles and :math:`\mathbf{p}` is the probability density function (PDF), :math:`n` is the dimension of state. 2. Priori State Estimation. .. math:: \mathbf{x}^{-}_{k} = f(\mathbf{x}_{k}, \mathbf{u}_{k}, t) 3. Relative Likelihood. .. math:: \begin{aligned} & \mathbf{q} = \mathbf{p} (\mathbf{y} |\mathbf{x}^{-}_{k}) \\ & \mathbf{q}_{i} = \frac{\mathbf{q}_{i}}{\sum_{j=1}^{N}\mathbf{q}_{j}} \end{aligned} 4. Resample Particles. a. Generate random numbers :math:`r_i \sim U(0,1), i=1,\cdots,N`, where :math:`U` is uniform distribution. b. Find :math:`j` satisfying :math:`\sum_{m=1}^{j-1}q_m\leq r_i<\sum_{m=1}^{j}q_m`, then new particle :math:`\mathbf{x}^{r-}_{i}` is set equal to old particle :math:`\mathbf{x}^{-}_{j}`. 5. Refine Posteriori And Covariances. .. math:: \begin{aligned} & \mathbf{x}^{+} =\frac{1}{N} \sum_{i=1}^{n}\mathbf{x}^{r-}_{i} \\ & P^{+} = \sum_{i=1}^{N} (\mathbf{x}^{+} - \mathbf{x}^{r-}_{i}) (\mathbf{x}^{+} - \mathbf{x}^{r-}_{i})^{T} + \mathbf{Q} \end{aligned} Example: 1. Define a discrete-time non-linear system (NLS) model >>> import torch, pypose as pp >>> class NLS(pp.module.NLS): ... def __init__(self): ... super().__init__() ... ... def state_transition(self, state, input, t=None): ... return state.cos() + input ... ... def observation(self, state, input, t): ... return state.sin() + input 2. Create a model and filter >>> model = NLS() >>> pf = pp.module.PF(model) 3. Prepare data >>> T, N = 5, 2 # steps, state dim >>> states = torch.zeros(T, N) >>> inputs = torch.randn(T, N) >>> observ = torch.zeros(T, N) >>> # std of transition, observation, and estimation >>> q, r, p = 0.1, 0.1, 10 >>> Q = torch.eye(N) * q**2 >>> R = torch.eye(N) * r**2 >>> P = torch.eye(N).repeat(T, 1, 1) * p**2 >>> estim = torch.randn(T, N) * p 4. Perform PF prediction. Note that estimation error becomes smaller with more steps. >>> for i in range(T - 1): ... w = q * torch.randn(N) # transition noise ... v = r * torch.randn(N) # observation noise ... states[i+1], observ[i] = model(states[i] + w, inputs[i]) ... estim[i+1], P[i+1] = pf(estim[i], observ[i] + v, inputs[i], P[i], Q, R) ... print('Est error:', (states - estim).norm(dim=-1)) Est error: tensor([10.7083, 1.6012, 0.3339, 0.1723, 0.1107]) Note: Implementation is based on Section 15.2 of this book * Dan Simon, `Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches <https://onlinelibrary.wiley.com/doi/book/10.1002/0470045345>`_, Cleveland State University, 2006 ''' def __init__(self, model, Q=None, R=None, particles=1000): super().__init__(model, Q, R) self.particles = particles
[docs] def forward(self, x, y, u, P, Q=None, R=None, t=None): r''' Performs one step estimation. Args: x (:obj:`Tensor`): estimated system state of previous step. y (:obj:`Tensor`): system observation at current step (measurement). u (:obj:`Tensor`): system input at current step. P (:obj:`Tensor`): state estimation covariance of previous step. Q (:obj:`Tensor`, optional): covariance of system transition model. Default: ``None``. R (:obj:`Tensor`, optional): covariance of system observation model. Default: ``None``. t (:obj:`int`, optional): set system timestamp for estimation. If ``None``, current system time is used. Default: ``None``. Return: list of :obj:`Tensor`: posteriori state and covariance estimation ''' # Upper cases are matrices, lower cases are vectors Q = Q if Q is not None else self.Q R = R if R is not None else self.R self.model.set_refpoint(state=x, input=u, t=t) n = x.size(-1) xp = self.generate_particles(x, n * P) xs, ye = self.model(xp, u) q = self.relative_likelihood(y, ye, R) xr = self.resample_particles(q, xs) x = xr.mean(dim=-2) ex = xr - x P = self.compute_cov(ex, ex, Q) return x, P
[docs] def generate_particles(self, x, P): r''' Randomly generate particles Args: x (:obj:`Tensor`): estimated system state of previous step P (:obj:`Tensor`): state estimation covariance of previous step Return: list of :obj:`Tensor`: particles ''' m = MultivariateNormal(x, P) return m.sample(torch.Size([self.particles]))
[docs] def relative_likelihood(self, y, ye, R): r''' Compute the relative likelihood ''' return F.softmax(MultivariateNormal(ye, R).log_prob(y), dim=-1)
[docs] def resample_particles(self, q, x): r''' Resample the set of a posteriori particles ''' r = torch.rand(self.particles, dtype=x.dtype, device=x.device) cumsumq = torch.cumsum(q, dim=-1) return x[torch.searchsorted(cumsumq, r)]
[docs] def compute_cov(self, a, b, Q=0): '''Compute covariance of two set of variables.''' return Q + bvv(a, b).mean(dim=-3)

Docs

Access documentation for PyPose

View Docs

Tutorials

Get started with tutorials and examples

View Tutorials

Get Started

Find resources and how to start using pypose

View Resources