import torch
from .. import bmv
from .ekf import EKF
from torch.linalg import pinv
[docs]class UKF(EKF):
r'''
Performs Batched Unscented Kalman Filter (UKF).
Args:
model (:obj:`System`): The system model to be estimated, a subclass of
:obj:`pypose.module.NLS`.
Q (:obj:`Tensor`, optional): The covariance matrices of system transition noise.
Ignored if provided during each iteration. Default: ``None``
R (:obj:`Tensor`, optional): The covariance matrices of system observation noise.
Ignored if provided during each iteration. Default: ``None``
A non-linear system can be described as
.. math::
\begin{aligned}
\mathbf{x}_{k+1} &= \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k, t_k) + \mathbf{w}_k,
\quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}) \\
\mathbf{y}_{k} &= \mathbf{g}(\mathbf{x}_k, \mathbf{u}_k, t_k) + \mathbf{v}_k,
\quad \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R})
\end{aligned}
UKF can be described as the following equations, where the subscript :math:`\cdot_{k}`
is omited for simplicity.
1. Sigma Points.
.. math::
\begin{aligned}
& \mathbf{x}^{\left ( i \right ) } = \mathbf{x}^{+} +
\mathbf{\check{x}}^{\left(i \right)}, & \quad i=0,...,2n\\
& \mathbf{\check{x}}^{\left (i \right)} = \mathbf{0}, & \quad i=0 \\
& \mathbf{\check{x}}^{\left (i \right)} = \left(\sqrt{(n+\kappa)P} \right)_{i}^{T},
& \quad i= 1, ..., n \\
& \mathbf{\check{x}}^{\left(i \right)} = -\left(\sqrt{(n+\kappa)P} \right)_{i}^{T},
& \quad i=n+1, ..., 2n \\
\end{aligned}
where :math:`\left(\sqrt{(n+\kappa)P}\right) _{i}` is the :math:`i`-th row of
:math:`\left(\sqrt{(n+\kappa)P}\right)` and :math:`n` is the dimension of state :math:`\mathbf{x}`.
Their weighting cofficients are given as
.. math::
\begin{aligned}
&W^{(0)} = \frac{\kappa}{n+\kappa}, & \quad i = 0\\
&W^{(i)} = \frac{1}{2(n+\kappa)}, & \quad i = 1,...,2n\\
\end{aligned}
2. Priori State Estimation.
.. math::
\mathbf{x}^{-} = \sum_{i=0}^{2n} W^{(i)} f(\mathbf{x}^{(i)}, \mathbf{u}, t)
3. Priori Covariance.
.. math::
\mathbf{P}^{-} = \sum_{i=0}^{2n} W^{(i)}
\left(\mathbf{x}^{(i)} - \mathbf{x}^{-} \right)
\left(\mathbf{x}^{(i)} - \mathbf{x}^- \right)^T + \mathbf{Q}
4. Observational Estimation.
.. math::
\begin{aligned}
& \mathbf{y}^{(i)} = g \left( \mathbf{x}^{(i)}, \mathbf{u}, t \right),
& \quad i = 0, \cdots, 2n \\
& \bar{\mathbf{y}} = \sum_{i=0}^{2n} W^{(i)} \mathbf{y}^{(i)}
\end{aligned}
5. Observational Covariance.
.. math::
\mathbf{P}_{y} = \sum_{i=0}^{2n} W^{(i)}
\left(\mathbf{y}^{(i)} - \bar{\mathbf{y}} \right)
\left( \mathbf{y}^{(i)} - \bar{\mathbf{y}} \right)^T + \mathbf{R}
6. Priori and Observation Covariance:
.. math::
\mathbf{P}_{xy} = \sum_{i=0}^{2n} W^{(i)}
\left( \mathbf{x}^{(i)} - \mathbf{x}^- \right)
\left( \mathbf{y}^{(i)} - \bar{\mathbf{y}} \right)^T
7. Kalman Gain
.. math::
\mathbf{K} = \mathbf{P}_{xy}\mathbf{P}_{y}^{-1}
8. Posteriori State Estimation.
.. math::
\mathbf{x}^{+} = \mathbf{x}^{-} + \mathbf{K} (\mathbf{y}- \bar{\mathbf{y}})
9. Posteriori Covariance Estimation.
.. math::
\mathbf{P} = \mathbf{P}^{-} - \mathbf{K}\mathbf{P}_{y}\mathbf{K}^T
where superscript :math:`\cdot^{-}` and :math:`\cdot^{+}` denote the priori and
posteriori estimation, respectively.
Example:
1. Define a discrete-time non-linear system (NLS) model
>>> import torch, pypose as pp
>>> class NLS(pp.module.NLS):
... def __init__(self):
... super().__init__()
...
... def state_transition(self, state, input, t=None):
... return state.cos() + input
...
... def observation(self, state, input, t):
... return state.sin() + input
2. Create a model and filter
>>> model = NLS()
>>> ukf = pp.module.UKF(model)
3. Prepare data
>>> T, N = 5, 2 # steps, state dim
>>> states = torch.zeros(T, N)
>>> inputs = torch.randn(T, N)
>>> observ = torch.zeros(T, N)
>>> # std of transition, observation, and estimation
>>> q, r, p = 0.1, 0.1, 10
>>> Q = torch.eye(N) * q**2
>>> R = torch.eye(N) * r**2
>>> P = torch.eye(N).repeat(T, 1, 1) * p**2
>>> estim = torch.randn(T, N) * p
4. Perform UKF prediction. Note that estimation error becomes smaller with more steps.
>>> for i in range(T - 1):
... w = q * torch.randn(N) # transition noise
... v = r * torch.randn(N) # observation noise
... states[i+1], observ[i] = model(states[i] + w, inputs[i])
... estim[i+1], P[i+1] = ukf(estim[i], observ[i] + v, inputs[i], P[i], Q, R)
... print('Est error:', (states - estim).norm(dim=-1))
Est error: tensor([8.8161, 9.0322, 5.4756, 2.2453, 0.9141])
Note:
Implementation is based on Section 14.3 of this book
* Dan Simon, `Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches
<https://onlinelibrary.wiley.com/doi/book/10.1002/0470045345>`_,
Cleveland State University, 2006
'''
def __init__(self, model, Q=None, R=None, msqrt=None):
super().__init__(model, Q, R)
self.msqrt = torch.linalg.cholesky if msqrt is None else msqrt
[docs] def forward(self, x, y, u, P, Q=None, R=None, t=None, k=None):
r'''
Performs one step estimation.
Args:
x (:obj:`Tensor`): estimated system state of previous step.
y (:obj:`Tensor`): system observation at current step (measurement).
u (:obj:`Tensor`): system input at current step.
P (:obj:`Tensor`): state estimation covariance of previous step.
Q (:obj:`Tensor`, optional): covariance of system transition model.
R (:obj:`Tensor`, optional): covariance of system observation model.
t (:obj:`Tensor`, optional): timestamp for ths system to estimate. Default: ``None``.
k (``int``, optional): a parameter for weighting the sigma points.
If ``None`` is given, then ``3 - n`` is adopted (``n`` is the state dimension),
which is best for Gaussian noise model. Default: ``None``.
Return:
list of :obj:`Tensor`: posteriori state and covariance estimation
'''
# Upper cases are matrices, lower cases are vectors
k = 3 - x.size(-1) if k is None else k
Q = Q if Q is not None else self.Q
R = R if R is not None else self.R
self.model.set_refpoint(state=x, input=u, t=t)
xs, w = self.sigma_weight_points(x, P, k)
xs = self.model.state_transition(xs, u, t)
xe = (w * xs).sum(dim=-2)
ex = xe - xs
P = self.compute_cov(ex, ex, w, Q)
xs, w = self.sigma_weight_points(xe, P, k)
ys = self.model.observation(xs, u, t)
ye = (w * ys).sum(dim=-2)
ey = ye - ys
Py = self.compute_cov(ey, ey, w, R)
Pxy = self.compute_cov(ex, ey, w)
K = Pxy @ pinv(Py)
x = xe + bmv(K, y - ye)
P = P - K @ Py @ K.mT
return x, P
[docs] def sigma_weight_points(self, x, P, k):
r'''
Compute sigma point and its weights
Args:
x (:obj:`Tensor`): estimated system state of previous step
P (:obj:`Tensor`): state estimation covariance of previous step
k (:obj:`int`): parameter for weighting sigma points.
Return:
tuple of :obj:`Tensor`: sigma points and their weights
'''
assert x.size(-1) == P.size(-1) == P.size(-2), 'Invalid shape'
n, xe = x.size(-1), x.unsqueeze(-2)
xr = self.msqrt((n + k) * P)
we = torch.full(xe.shape[:-1], k / (n + k), dtype=x.dtype, device=x.device)
wr = torch.full(xr.shape[:-1], 1 / (2 * (n + k)), dtype=x.dtype, device=x.device)
p = torch.cat((xe, xe + xr, xe - xr), dim=-2)
w = torch.cat((we, wr, wr), dim=-1)
return p, w.unsqueeze(-1)
[docs] def compute_cov(self, a, b, w, Q=0):
'''Compute covariance of two set of variables.'''
a, b = a.unsqueeze(-1), b.unsqueeze(-1)
return Q + (w.unsqueeze(-1) * a @ b.mT).sum(dim=-3)