Shortcuts

Source code for pypose.module.ukf

import torch
from .. import bmv
from .ekf import EKF
from torch.linalg import pinv


[docs]class UKF(EKF): r''' Performs Batched Unscented Kalman Filter (UKF). Args: model (:obj:`System`): The system model to be estimated, a subclass of :obj:`pypose.module.NLS`. Q (:obj:`Tensor`, optional): The covariance matrices of system transition noise. Ignored if provided during each iteration. Default: ``None`` R (:obj:`Tensor`, optional): The covariance matrices of system observation noise. Ignored if provided during each iteration. Default: ``None`` A non-linear system can be described as .. math:: \begin{aligned} \mathbf{x}_{k+1} &= \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k, t_k) + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}) \\ \mathbf{y}_{k} &= \mathbf{g}(\mathbf{x}_k, \mathbf{u}_k, t_k) + \mathbf{v}_k, \quad \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}) \end{aligned} UKF can be described as the following equations, where the subscript :math:`\cdot_{k}` is omited for simplicity. 1. Sigma Points. .. math:: \begin{aligned} & \mathbf{x}^{\left ( i \right ) } = \mathbf{x}^{+} + \mathbf{\check{x}}^{\left(i \right)}, & \quad i=0,...,2n\\ & \mathbf{\check{x}}^{\left (i \right)} = \mathbf{0}, & \quad i=0 \\ & \mathbf{\check{x}}^{\left (i \right)} = \left(\sqrt{(n+\kappa)P} \right)_{i}^{T}, & \quad i= 1, ..., n \\ & \mathbf{\check{x}}^{\left(i \right)} = -\left(\sqrt{(n+\kappa)P} \right)_{i}^{T}, & \quad i=n+1, ..., 2n \\ \end{aligned} where :math:`\left(\sqrt{(n+\kappa)P}\right) _{i}` is the :math:`i`-th row of :math:`\left(\sqrt{(n+\kappa)P}\right)` and :math:`n` is the dimension of state :math:`\mathbf{x}`. Their weighting cofficients are given as .. math:: \begin{aligned} &W^{(0)} = \frac{\kappa}{n+\kappa}, & \quad i = 0\\ &W^{(i)} = \frac{1}{2(n+\kappa)}, & \quad i = 1,...,2n\\ \end{aligned} 2. Priori State Estimation. .. math:: \mathbf{x}^{-} = \sum_{i=0}^{2n} W^{(i)} f(\mathbf{x}^{(i)}, \mathbf{u}, t) 3. Priori Covariance. .. math:: \mathbf{P}^{-} = \sum_{i=0}^{2n} W^{(i)} \left(\mathbf{x}^{(i)} - \mathbf{x}^{-} \right) \left(\mathbf{x}^{(i)} - \mathbf{x}^- \right)^T + \mathbf{Q} 4. Observational Estimation. .. math:: \begin{aligned} & \mathbf{y}^{(i)} = g \left( \mathbf{x}^{(i)}, \mathbf{u}, t \right), & \quad i = 0, \cdots, 2n \\ & \bar{\mathbf{y}} = \sum_{i=0}^{2n} W^{(i)} \mathbf{y}^{(i)} \end{aligned} 5. Observational Covariance. .. math:: \mathbf{P}_{y} = \sum_{i=0}^{2n} W^{(i)} \left(\mathbf{y}^{(i)} - \bar{\mathbf{y}} \right) \left( \mathbf{y}^{(i)} - \bar{\mathbf{y}} \right)^T + \mathbf{R} 6. Priori and Observation Covariance: .. math:: \mathbf{P}_{xy} = \sum_{i=0}^{2n} W^{(i)} \left( \mathbf{x}^{(i)} - \mathbf{x}^- \right) \left( \mathbf{y}^{(i)} - \bar{\mathbf{y}} \right)^T 7. Kalman Gain .. math:: \mathbf{K} = \mathbf{P}_{xy}\mathbf{P}_{y}^{-1} 8. Posteriori State Estimation. .. math:: \mathbf{x}^{+} = \mathbf{x}^{-} + \mathbf{K} (\mathbf{y}- \bar{\mathbf{y}}) 9. Posteriori Covariance Estimation. .. math:: \mathbf{P} = \mathbf{P}^{-} - \mathbf{K}\mathbf{P}_{y}\mathbf{K}^T where superscript :math:`\cdot^{-}` and :math:`\cdot^{+}` denote the priori and posteriori estimation, respectively. Example: 1. Define a discrete-time non-linear system (NLS) model >>> import torch, pypose as pp >>> class NLS(pp.module.NLS): ... def __init__(self): ... super().__init__() ... ... def state_transition(self, state, input, t=None): ... return state.cos() + input ... ... def observation(self, state, input, t): ... return state.sin() + input 2. Create a model and filter >>> model = NLS() >>> ukf = pp.module.UKF(model) 3. Prepare data >>> T, N = 5, 2 # steps, state dim >>> states = torch.zeros(T, N) >>> inputs = torch.randn(T, N) >>> observ = torch.zeros(T, N) >>> # std of transition, observation, and estimation >>> q, r, p = 0.1, 0.1, 10 >>> Q = torch.eye(N) * q**2 >>> R = torch.eye(N) * r**2 >>> P = torch.eye(N).repeat(T, 1, 1) * p**2 >>> estim = torch.randn(T, N) * p 4. Perform UKF prediction. Note that estimation error becomes smaller with more steps. >>> for i in range(T - 1): ... w = q * torch.randn(N) # transition noise ... v = r * torch.randn(N) # observation noise ... states[i+1], observ[i] = model(states[i] + w, inputs[i]) ... estim[i+1], P[i+1] = ukf(estim[i], observ[i] + v, inputs[i], P[i], Q, R) ... print('Est error:', (states - estim).norm(dim=-1)) Est error: tensor([8.8161, 9.0322, 5.4756, 2.2453, 0.9141]) Note: Implementation is based on Section 14.3 of this book * Dan Simon, `Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches <https://onlinelibrary.wiley.com/doi/book/10.1002/0470045345>`_, Cleveland State University, 2006 ''' def __init__(self, model, Q=None, R=None, msqrt=None): super().__init__(model, Q, R) self.msqrt = torch.linalg.cholesky if msqrt is None else msqrt
[docs] def forward(self, x, y, u, P, Q=None, R=None, t=None, k=None): r''' Performs one step estimation. Args: x (:obj:`Tensor`): estimated system state of previous step. y (:obj:`Tensor`): system observation at current step (measurement). u (:obj:`Tensor`): system input at current step. P (:obj:`Tensor`): state estimation covariance of previous step. Q (:obj:`Tensor`, optional): covariance of system transition model. R (:obj:`Tensor`, optional): covariance of system observation model. t (:obj:`Tensor`, optional): timestamp for ths system to estimate. Default: ``None``. k (``int``, optional): a parameter for weighting the sigma points. If ``None`` is given, then ``3 - n`` is adopted (``n`` is the state dimension), which is best for Gaussian noise model. Default: ``None``. Return: list of :obj:`Tensor`: posteriori state and covariance estimation ''' # Upper cases are matrices, lower cases are vectors k = 3 - x.size(-1) if k is None else k Q = Q if Q is not None else self.Q R = R if R is not None else self.R self.model.set_refpoint(state=x, input=u, t=t) xs, w = self.sigma_weight_points(x, P, k) xs = self.model.state_transition(xs, u, t) xe = (w * xs).sum(dim=-2) ex = xe - xs P = self.compute_cov(ex, ex, w, Q) xs, w = self.sigma_weight_points(xe, P, k) ys = self.model.observation(xs, u, t) ye = (w * ys).sum(dim=-2) ey = ye - ys Py = self.compute_cov(ey, ey, w, R) Pxy = self.compute_cov(ex, ey, w) K = Pxy @ pinv(Py) x = xe + bmv(K, y - ye) P = P - K @ Py @ K.mT return x, P
[docs] def sigma_weight_points(self, x, P, k): r''' Compute sigma point and its weights Args: x (:obj:`Tensor`): estimated system state of previous step P (:obj:`Tensor`): state estimation covariance of previous step k (:obj:`int`): parameter for weighting sigma points. Return: tuple of :obj:`Tensor`: sigma points and their weights ''' assert x.size(-1) == P.size(-1) == P.size(-2), 'Invalid shape' n, xe = x.size(-1), x.unsqueeze(-2) xr = self.msqrt((n + k) * P) we = torch.full(xe.shape[:-1], k / (n + k), dtype=x.dtype, device=x.device) wr = torch.full(xr.shape[:-1], 1 / (2 * (n + k)), dtype=x.dtype, device=x.device) p = torch.cat((xe, xe + xr, xe - xr), dim=-2) w = torch.cat((we, wr, wr), dim=-1) return p, w.unsqueeze(-1)
[docs] def compute_cov(self, a, b, w, Q=0): '''Compute covariance of two set of variables.''' a, b = a.unsqueeze(-1), b.unsqueeze(-1) return Q + (w.unsqueeze(-1) * a @ b.mT).sum(dim=-3)

Docs

Access documentation for PyPose

View Docs

Tutorials

Get started with tutorials and examples

View Tutorials

Get Started

Find resources and how to start using pypose

View Resources