pypose.RxSO3¶
- pypose.RxSO3 = functools.partial(<class 'pypose.lietensor.lietensor.LieTensor'>, ltype=<pypose.lietensor.lietensor.RxSO3Type object>)¶
Alias of RxSO3 type
LieTensor
.- Parameters:
data (
Tensor
, orlist
, or ‘int
…’) –A
Tensor
object, or constructing aTensor
object fromlist
, which defines tensor data (see below), or from ‘int
…’, which defines tensor shape.The shape of
Tensor
object must be(*, 5)
, where*
is empty, one, or more batched dimensions (thelshape
of this LieTensor), otherwise error will be raised.
Internally, RxSO3 LieTensors are stored by concatenating the unit quaternion representing the rotation with a scaling factor:
\[\mathrm{data}[*, :] = [q_x, q_y, q_z, q_w, s], \]where \(\begin{pmatrix} q_x & q_y & q_z & q_w \end{pmatrix}^T\) is the unit quaternion as in
pypose.SO3
and \(s \in \mathbb{R}\) is the scaling factor.Examples
>>> pp.RxSO3(torch.randn(2, 5)) RxSO3Type LieTensor: tensor([[-0.3693, 2.5155, -0.5384, -0.8119, -0.4798], [-0.4058, -0.5909, -0.4918, -0.2994, 0.5440]]) >>> pp.RxSO3([0, 0, 0, 1, 1]) RxSO3Type LieTensor: tensor([0., 0., 0., 1., 1.])
If
data
is tensor-like, the last dimension should correspond to the 5 elements of the above embedding.Note
It is not advised to construct RxSO3 Tensors by specifying storage sizes with ‘
int
…’, which does not initialize data.Consider using
pypose.randn_RxSO3
orpypose.identity_RxSO3
instead.See
pypose.Log
,pypose.Inv
,pypose.Act
,pypose.Retr
,pypose.Adj
,pypose.AdjT
,pypose.Jinvp
for implementations of relevant operations.