Shortcuts

pypose.identity_rxso3

class pypose.identity_rxso3(*size, **kwargs)[source]

Returns identity rxso3_type LieTensor with the given lsize.

See rxSO3() for implementation details.

Parameters:
  • lsize (int..., optional) – a sequence of integers defining the LieTensor.lshape of the output LieTensor. Can be a variable number of arguments or a collection like a list or tuple. If not given, a single rxso3_type item will be returned.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

  • generator (torch.Generator, optional) – a pseudorandom number generator for sampling

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_tensor_type()).

  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

Returns:

a rxso3_type LieTensor

Return type:

LieTensor

Example

>>> pp.identity_rxso3()
rxso3Type LieTensor:
tensor([0., 0., 0., 0.])
>>> pp.identity_rxso3(2)
rxso3Type LieTensor:
tensor([[0., 0., 0., 0.],
        [0., 0., 0., 0.]])
>>> pp.identity_rxso3(2, 1)
rxso3Type LieTensor:
tensor([[[0., 0., 0., 0.]],
        [[0., 0., 0., 0.]]])

Docs

Access documentation for PyPose

View Docs

Tutorials

Get started with tutorials and examples

View Tutorials

Get Started

Find resources and how to start using pypose

View Resources