pypose.module.EKF¶
- class pypose.module.EKF(model, Q=None, R=None)[source]¶
Performs Batched Extended Kalman Filter (EKF).
- Parameters:
model (
System
) – The system model to be estimated, a subclass ofpypose.module.NLS
.Q (
Tensor
, optional) – The covariance matrices of system transition noise. Ignored if provided during each iteration. Default:None
R (
Tensor
, optional) – The covariance matrices of system observation noise. Ignored if provided during each iteration. Default:None
A non-linear system can be described as
\[\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k, t_k) + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}) \\ \mathbf{y}_{k} &= \mathbf{h}(\mathbf{x}_k, \mathbf{u}_k, t_k) + \mathbf{v}_k, \quad \mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}) \end{aligned} \]It will be linearized automatically:
\[\begin{align*} \mathbf{z}_{k+1} = \mathbf{A}_{k}\mathbf{x}_{k} + \mathbf{B}_{k}\mathbf{u}_{k} + \mathbf{c}_{k}^1 + \mathbf{w}_k\\ \mathbf{y}_{k} = \mathbf{C}_{k}\mathbf{x}_{k} + \mathbf{D}_{k}\mathbf{u}_{k} + \mathbf{c}_{k}^2 + \mathbf{v}_k\\ \end{align*} \]EKF can be described as the following five equations, where the subscript \(\cdot_{k}\) is omited for simplicity.
Priori State Estimation.
\[\mathbf{x}^{-} = \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k, t_k) \]Priori Covariance Propagation.
\[\mathbf{P}^{-} = \mathbf{A}\mathbf{P}\mathbf{A}^{T} + \mathbf{Q} \]Update Kalman Gain
\[\mathbf{K} = \mathbf{P}\mathbf{C}^{T} (\mathbf{C}\mathbf{P} \mathbf{C}^{T} + \mathbf{R})^{-1} \]Posteriori State Estimation
\[\mathbf{x}^{+} = \mathbf{x}^{-} + \mathbf{K} (\mathbf{y} - \mathbf{h}(\mathbf{x}^{-}, \mathbf{u})) \]Posteriori Covariance Estimation
\[\mathbf{P}^{+} = (\mathbf{I} - \mathbf{K}\mathbf{C}) \mathbf{P}^{-} \]
where superscript \(\cdot^{-}\) and \(\cdot^{+}\) denote the priori and posteriori estimation, respectively.
Example
Define a discrete-time non-linear system (NLS) model
>>> import torch, pypose as pp >>> class NLS(pp.module.NLS): ... def __init__(self): ... super().__init__() ... ... def state_transition(self, state, input, t=None): ... return state.cos() + input ... ... def observation(self, state, input, t): ... return state.sin() + input
Create a model and filter
>>> model = NLS() >>> ekf = pp.module.EKF(model)
Prepare data
>>> T, N = 5, 2 # steps, state dim >>> states = torch.zeros(T, N) >>> inputs = torch.randn(T, N) >>> observ = torch.zeros(T, N) >>> # std of transition, observation, and estimation >>> q, r, p = 0.1, 0.1, 10 >>> Q = torch.eye(N) * q**2 >>> R = torch.eye(N) * r**2 >>> P = torch.eye(N).repeat(T, 1, 1) * p**2 >>> estim = torch.randn(T, N) * p
Perform EKF prediction. Note that estimation error becomes smaller with more steps.
>>> for i in range(T - 1): ... w = q * torch.randn(N) # transition noise ... v = r * torch.randn(N) # observation noise ... states[i+1], observ[i] = model(states[i] + w, inputs[i]) ... estim[i+1], P[i+1] = ekf(estim[i], observ[i] + v, inputs[i], P[i], Q, R) ... print('Est error:', (states - estim).norm(dim=-1)) Est error: tensor([5.7655, 5.3436, 3.5947, 0.3359, 0.0639])
Warning
Don’t introduce noise in
System
methodsstate_transition
andobservation
for filter testing, as those methods are used for automatically linearizing the system by the parent classpypose.module.NLS
, unless your system model explicitly introduces noise.Note
Implementation is based on Section 13.2 of this book
Dan Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches, Cleveland State University, 2006
- property Q¶
The covariance of system transition noise.
- property R¶
The covariance of system observation noise.
- forward(x, y, u, P, Q=None, R=None, t=None)[source]¶
Performs one step estimation.
- Parameters:
x (
Tensor
) – estimated system state of previous step.y (
Tensor
) – system observation at current step (measurement).u (
Tensor
) – system input at current step.P (
Tensor
) – state estimation covariance of previous step.Q (
Tensor
, optional) – covariance of system transition model. Default:None
R (
Tensor
, optional) – covariance of system observation model. Default:None
t (
Tensor
, optional) – timestep of system (only for time variant system). Default:None
- Returns:
posteriori state and covariance estimation
- Return type:
list of
Tensor