pypose.randn_rxso3¶
- class pypose.randn_rxso3(*lsize, sigma=1.0, **kwargs)[source]¶
Returns
rxso3_type
LieTensor filled with random numbers.\[\mathrm{data}[*, :] = [\delta_x, \delta_y, \delta_z, \log s], \]where rotation \([\delta_x, \delta_y, \delta_z]\) is generated using
pypose.randn_so3()
with standard deviation \(\sigma_r\), scale \(\log s\) is generated from a normal distribution \(\mathcal{N}(0, \sigma_s)\). Note that standard deviations \(\sigma_r\) and \(\sigma_s\) are specified bysigma
(\(\sigma\)), where \(\sigma = (\sigma_r, \sigma_s)\).- Parameters:
lsize (int...) – a sequence of integers defining the lshape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
sigma (float or (float...), optional) – standard deviation (\(\sigma_r\), and \(\sigma_s\)) for the two normal distribution. Default:
1.0
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.generator (torch.Generator, optional) – a pseudorandom number generator for sampling
dtype (torch.dtype, optional) – the desired data type of returned tensor. Default:
None
. IfNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (torch.layout, optional) – the desired layout of returned Tensor. Default:
torch.strided
.device (torch.device, optional) – the desired device of returned tensor. Default:
None
. IfNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
). Device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- Returns:
a
rxso3_type
LieTensor- Return type:
Note
The parameter \(\sigma\) can either be:
a single
float
– in which all the elements in therxso3_type
share the same sigma, i.e., \(\sigma_{\rm{r}}\) = \(\sigma_{\rm{s}}\) = \(\sigma\).a
tuple
of two floats – in which case, the specific sigmas for the two parts are assigned independently, i.e., \(\sigma\) = (\(\sigma_{\rm{r}}\), \(\sigma_{\rm{s}}\)).
Example
For \(\sigma = (\sigma_r, \sigma_s)\)
>>> pp.randn_rxso3(2, sigma=(1.0, 2.0)) rxso3Type LieTensor: tensor([[-0.5033, -0.4102, -0.6213, -3.5049], [-0.3185, 0.1053, -0.0816, -1.1907]])