pypose.randn_se3¶
- class pypose.randn_se3(*lsize, sigma=1.0, **kwargs)[source]¶
Returns
se3_type
LieTensor filled with random numbers.\[\mathrm{data}[*, :] = [\tau_x, \tau_y, \tau_z, \delta_x, \delta_y, \delta_z], \]where translation \([\tau_x, \tau_y, \tau_z]\) is generated from a normal distribution \(\mathcal{N}(0, \sigma_t)\), rotation \([\delta_x, \delta_y, \delta_z]\) is generated using
pypose.randn_so3()
with standard deviation \(\sigma_r\). Note that standard deviations \(\sigma_t\) and \(\sigma_r\) are specified bysigma
(\(\sigma\)), where \(\sigma = (\sigma_t, \sigma_r)\).- Parameters:
lsize (int...) – a sequence of integers defining the lshape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
sigma (float or (float...), optional) – standard deviation (\(\sigma_t\) and \(\sigma_r\)) for the two normal distribution. Default:
1.0
.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.generator (torch.Generator, optional) – a pseudorandom number generator for sampling
dtype (torch.dtype, optional) – the desired data type of returned tensor. Default:
None
. IfNone
, uses a global default (seetorch.set_default_tensor_type()
).layout (torch.layout, optional) – the desired layout of returned Tensor. Default:
torch.strided
.device (torch.device, optional) – the desired device of returned tensor. Default:
None
. IfNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
). Device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- Returns:
a
se3_type
LieTensor.- Return type:
Note
The parameter \(\sigma\) can either be:
a single
float
– in which all the elements in these3_type
share the same sigma, i.e., \(\sigma_{\rm{t}}\) = \(\sigma_{\rm{r}}\) = \(\sigma\).a
tuple
of two floats – in which case, the specific sigmas are assigned independently, i.e., \(\sigma\) = (\(\sigma_{\rm{t}}\), \(\sigma_{\rm{r}}\)).a
tuple
of four floats – in which case, the specific sigmas for each translation data are assigned independently, i.e., \(\sigma\) = (\(\sigma_{\rm{tx}}\), \(\sigma_{\rm{ty}}\), \(\sigma_{\rm{tz}}\), \(\sigma_{\rm{r}}\)).
Example
For \(\sigma = (\sigma_t, \sigma_r)\)
>>> pp.randn_se3(2, sigma=(1.0, 0.5)) se3Type LieTensor: tensor([[-0.4226, 0.4028, -1.3824, 0.4433, -0.2029, -0.1193], [-0.8423, -1.0435, 0.8311, -0.4733, 0.0175, 0.1400]])
For \(\sigma = (\sigma_{tx}, \sigma_{ty}, \sigma_{tz}, \sigma_{r})\)
>>> pp.randn_se3(2, sigma=(1.0, 2.0, 3.0, 0.5)) se3Type LieTensor: tensor([[ 1.1209, 1.4211, -0.7237, -0.1168, 0.0128, 0.1479], [ 0.1765, 0.3891, 3.4799, -0.0411, -0.2616, -0.1028]])