pypose.sim3¶
- pypose.sim3 = functools.partial(<class 'pypose.lietensor.lietensor.LieTensor'>, ltype=<pypose.lietensor.lietensor.sim3Type object>)¶
Alias of sim3 type
LieTensor.- Parameters:
data (
Tensor, orlist, or ‘int…’) –A
Tensorobject, or constructing aTensorobject fromlist, which defines tensor data (see below), or from ‘int…’, which defines tensor shape.The shape of
Tensorobject must be(*, 7), where*is empty, one, or more batched dimensions (thelshapeof this LieTensor), otherwise error will be raised.
Internally, sim3 LieTensors are stored by concatenating the log translation vector with the corresponding rxso3:
\[\mathrm{data}[*, :] = [\tau_x, \tau_y, \tau_z, \delta_x, \delta_y, \delta_z, \log s], \]where \(\begin{pmatrix} \tau_x & \tau_y & \tau_z \end{pmatrix}^T = \mathbf{W}^{-1} \begin{pmatrix} t_x & t_y & t_z \end{pmatrix}^T\) is the product between the inverse of the \(\mathbf{W}\)-matrix and the translation vector, and \(\begin{pmatrix} \delta_x & \delta_y & \delta_z & \log s \end{pmatrix}^T\) represents the rotation and scaling, as in
pypose.rxso3. More details about \(\mathbf{W}\)-matrix go topypose.Log()withSim3_typeinput.Examples
>>> pp.Sim3(torch.randn(2, 7)) sim3Type LieTensor: sim3Type LieTensor: tensor([[ 0.1477, -1.3500, -2.1571, 0.8893, -0.7821, -0.9889, -0.7887], [ 0.2251, 0.3512, 0.0485, 0.0163, -1.7090, -0.0417, -0.3842]]) >>> pp.sim3([0, 0, 0, 0, 0, 0, 1]) sim3Type LieTensor: tensor([0., 0., 0., 0., 0., 0., 1.])
If
datais tensor-like, the last dimension should correspond to the 7 elements of the above embedding.Note
It is not advised to construct sim3 Tensors by specifying storage sizes with ‘
int…’, which does not initialize data.Consider using
pypose.randn_sim3orpypose.identity_sim3instead.See
pypose.Exp,pypose.Invfor implementations of relevant operations.